In geometry, two figures are congruent if they have the same shape and size. More formally, two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry, i.e., a combination of translations, rotations and reflections.
The related concept of similarity permits a change in size.
Contents |
In a Euclidean system, congruence is fundamental; it is the counterpart of equality for numbers. In analytic geometry, congruence may be defined intuitively thus: two mappings of figures onto one Cartesian coordinate system are congruent if and only if, for any two points in the first mapping, the Euclidean distance between them is equal to the Euclidean distance between the corresponding points in the second mapping.
A more formal definition: two subsets A and B of Euclidean space Rn are called congruent if there exists an isometry f : Rn → Rn (an element of the Euclidean group E(n)) with f(A) = B. Congruence is an equivalence relation.
Two triangles are congruent if their corresponding sides are equal in length and their corresponding angles are equal in size.
If triangle ABC is congruent to triangle DEF, the relationship can be written mathematically as:
In many cases it is sufficient to establish the equality of three corresponding parts and use one of the following results to deduce the congruence of the two triangles.
Sufficient evidence for congruence between two triangles in Euclidean space can be shown through the following comparisons:
The SSA condition (Side-Side-Angle) which specifies two sides and a non-included angle (also known as ASS, or Angle-Side-Side) does not prove congruence. In order to show congruence, additional information is required such as the measure of the corresponding angles and in some cases the lengths of the two pairs of corresponding sides. There are four possible cases:
If two triangles satisfy the SSA condition and the corresponding angles are either obtuse or right, then the two triangles are congruent. In this situation, the length of the side opposite the angle will be greater than the length of the adjacent side. Where the angle is a right angle, also known as the Hypotenuse-Leg (HL) postulate or the Right-angle-Hypotenuse-Side (RHL) postulate, the third side can be calculated using the Pythagorean Theorem thus allowing the SSS postulate to be applied.
If two triangles satisfy the SSA condition and the corresponding angles are acute and length of the side opposite the angle is greater than or equal to the length of the adjacent side, then the two triangles are congruent.
If two triangles satisfy the SSA condition and the corresponding angles are acute and length of the side opposite the angle is equal to the length of the adjacent side multiplied by the sine of the angle, then the two triangles are congruent.
If two triangles satisfy the SSA condition and the corresponding angles are acute and length of the side opposite the angle is greater than the length of the adjacent side multiplied by the sine of the angle (but less than the length of the adjacent side), then the two triangles cannot be shown to be congruent. This is the ambiguous case and two different triangles can be formed from the given information.
AAA (Angle-Angle-Angle) does not provide information regarding the size of the two triangles and hence proves only similarity and not congruence in Euclidean space. However, in spherical geometry and hyperbolic geometry (where angle is a function of size) this is sufficient for congruence on a given curvature.[1]